

Interactive Music Science Collaborative Activities

Team Teaching for STEAM Education

Deliverable 4.10

Final Version of Computational models for sound and music

generation for virtual instruments

Date: 17/07/2018

Author(s): Robert Piechaud (IRCAM), Quentin Lamérand (IRCAM)

Contributor(s):

Quality Assuror(s): Fotini Simistira (UNIFRI), Carlos Acosta (LEOPOLY)

Dissemination level: PU

Work package WP4 – Core enabling technologies modules of iMuSciCA

Version: 1.0

Keywords: sound generation, virtual musical instrument

Description: Final version of the​ computational models for sound and music

generation for virtual instruments.

H2020-ICT-22-2016 Technologies for Learning and Skills

iMuSciCA ​(Interactive Music Science Collaborative Activities)

Project No. 731861

Project Runtime: January 2017 – June 2019
Copyright © iMuSciCA Consortium 2017-2019

Executive Summary
In this deliverable we present the final version of the computational models for sound and music

generation for virtual instruments. The virtual instrument models are based on physics and

embodied in IRCAM’s Modalys technology. As part of the iMuSciCA project, Modalys has been

ported from C++ to the browser HTML5 context in order to function like any other workbench

module. The result library is called modalys.js. First we present the Modalys iMuSciCA API, and then

we will expose some standalone examples. Finally and briefly, we will talk about CPU performances.

The following urls will be come across in this document:

Root url:

https://s3amdev.ircam.fr/

Instruments test urls:

https://s3amdev.ircam.fr/pluckedstrings.html

https://s3amdev.ircam.fr/pluckedstrings_with_snail.html

https://s3amdev.ircam.fr/xylo.html

https://s3amdev.ircam.fr/plate.html

https://s3amdev.ircam.fr/simpledrum.html

https://s3amdev.ircam.fr/pluckedstrings2channels.html

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 1 of 14

https://s3amdev.ircam.fr/
https://s3amdev.ircam.fr/pluckedstrings.html
https://s3amdev.ircam.fr/pluckedstrings_with_snail.html
https://s3amdev.ircam.fr/xylo.html
https://s3amdev.ircam.fr/plate.html
https://s3amdev.ircam.fr/simpledrum.html
https://s3amdev.ircam.fr/pluckedstrings2channels.html

Version Log

Date Version

No.

Author Change

27-06-2018 0.1 Robert Piechaud (IRCAM), Quentin Lamérand

(IRCAM)

Initial content

28-06-2018 0.2 Robert Piechaud (IRCAM), Quentin Lamérand

(IRCAM)

Ready for reviewing

12-07-2018 0.2 Fotini Simistira (UNIFRI), Carlos Acosta

(LEOPOLY)

Review comments

13-07-2018 0.2 Fotini Simistira (UNIFRI) Review comments

13-07-2018 0.3 Robert Piechaud (IRCAM), Quentin Lamérand

(IRCAM)

Address reviewers

comments

17-07-2018 1.0 Vassilis Katsouros (ATHENA) Submission to the EU

Disclaimer
This document contains description of the iMuSciCA project findings, work and products. Certain

parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using its content

please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as a

representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to be

accurate, consistent and lawful. However, neither the project consortium as a whole nor the

individual partners that implicitly or explicitly participated in the creation and publication of this

document hold any sort of responsibility that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this

publication is the sole responsibility of iMuSciCA consortium and can in no way be taken to reflect

the views of the European Union.

iMuSciCA is an H2020 project funded by the European Union.

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 2 of 14

TABLE OF CONTENTS

Executive Summary 1

1. Introduction 5

2. Installation and technical requirements for modalys.js 5

2.1. Installation 5

2.2 Requirements 5

3. Description and use of modalys.js 5

3.1. modalys.js API 6

3.1.1. Communication context 6

3.1.2. Messages to Modalys 6

3.1.3. Messages from Modalys 6

3.1.4. Trying a virtual music instrument at design stage 6

3.1.4.1 Primitive-based instruments 7

3.1.5. Playing a virtual music instrument 9

3.1.5.1. Preparing for performance 9

Parts 10

3.1.5.2. Notification when ready to play 10

3.1.5.3. Performing 11

3.1.5.4. Pausing, resuming or ending a performance 12

3.1.6. The server side eigenvalue solver for 3D objects 12

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 3 of 14

LIST OF ABBREVIATIONS

Abbreviation Description

JS Javascript

WASM Web Assembly

asm.js Strict subset of Javascript

API Application Programming Interface

CPU Central Processing Unit

WP Work Package

PU Public document

ATHENA ATHENA RESEARCH AND INNOVATION CENTER IN INFORMATION

COMMUNICATION & KNOWLEDGE TECHNOLOGIES

UCLL UC LIMBURG

EA ELLINOGERMANIKI AGOGI SCHOLI PANAGEA SAVVA AE

IRCAM INSTITUT DE RECHERCHE ET DE COORDINATION ACOUSTIQUE

MUSIQUE

LEOPOLY 3D FOR ALL SZAMITASTECHNIKAI FEJLESZTO KFT

CABRI Cabrilog SAS

WIRIS MATHS FOR MORE SL

UNIFRI UNIVERSITE DE FRIBOURG

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 4 of 14

1. Introduction
The Modalys virtual music instrument technology is embedded into ​modalys.js​, a single-file 1

javascript library. Modalys owns two types of sounding objects: i) primitives, such as strings, tubes,

plates or membranes, and ii) 3D objects defined by their geometry expressed in a mesh in .obj

format. In the second case, the mesh can either contains solids , or surface elements representing 2

the neutral fiber of the object. 3

modalys.js, through its message-based communication API, contains all that is required to

instantiate, test and finally perform virtual musical instruments based on physical models.

2. Installation and technical requirements for

modalys.js

2.1. Installation

modalys.js javascript library is included in the html code this way:

<​script​ src=​"script/modalys.js"​></​script​>

It defines a Modalys object that will need to be initialized in order to use it (cf. 3.1.2).

2.2 Requirements

modalys.js is built from the Modalys C++ code using emscripten with heavy optimizations. It 4

produced WebAssembly code, and a javascript loader. This resulting javascript is wrapped then in 5

an object that creates Web Audio nodes and an API to communicate with Modalys core functions.

3. Description and use of modalys.js
As a core sound library, modalys.js doesn’t ​display anything (apart from log messages within the

browser’s developer console). As such, modalys.js works very much as a server, responding to

client's request to test or perform virtual instruments.

1 http://forumnet.ircam.fr/product/modalys-en/
2 out of iMuSciCA’s scope.
3 or neutral axis: https://en.wikipedia.org/wiki/Neutral_axis
4 https://en.wikipedia.org/wiki/Emscripten
5 https://en.wikipedia.org/wiki/WebAssembly

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 5 of 14

3.1. modalys.js API

3.1.1. Communication context

iMuSciCA core modules communicate with each other through an ​asynchronous​ client-side

messaging service: ​postal.js​, which implements a channel/topic(.subtopic) paradigm.

● We use the ​modalys​ channel.

● Each module has a dedicated topic and subtopics.

● To ‘talk’ to the Modalys module, another module will publish on a topic from the ​modalys

channel, named after the requested action (ex: ​play​).
● Module can send notifications by publishing on the ​modalys > notification​ topic.

● A module will therefore subscribe to​ modalys > notification ​to receive Modalys’ feedbacks.

3.1.2. Messages ​to​ Modalys

Upon initialization modalys.js subscribes to all topics of the “modalys” channel and dispatches data

to methods of the Modalys object, whose names match the topics.

The Modalys object need to be initialized with an AudioContext and its output node connected to a

destination. Here is a minimal sample code to setup Modalys.

Modalys.isready.then(​function​() {
 ​var​ audioContext = ​new​ (​window​.AudioContext || ​window​.webkitAudioContext)();
 Modalys.init(audioContext);

 Modalys.output.connect(audioContext.destination);

});

var​ modalysChannel = postal.channel(​"modalys"​);

Here are the available topic of the “modalys” channel you can publish on :

● try​: test the sound of an instrument being designed.

● play​: real time performance of a virtual instrument.

● updateParameter​: update some parameter (pluck position etc) in real time while playing.

● pause​: put a virtual instrument in hold (play mode)

● resume​: resume playing the instrument after hold.

● stop​: stop a virtual instrument.

● instrumentInfo​ : ask materials list and presets for the specified “instrumentType”

3.1.3. Messages ​from​ Modalys

modalys.js publishes messages on the​ “notification” ​topic of the “modalys” channel.

3.1.4. Trying a virtual music instrument at design stage

It is a 3D Instrument Design ↔ modalys.js communication situation.

Below are the types of messages that should be sent upon instrument design stage, when testing

how an instrument sounds.

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 6 of 14

https://github.com/postaljs

3.1.4.1 Primitive-based instruments

Example for a 2-string instrument:

modalysChannel.publish(​"try"​,
 {

 ​"type"​: ​"pluckedString"​,
 ​"name"​: ​"MyBiChord"​,
 ​"content"​: [
 {

 ​"type"​: ​"chord"​,
 ​"name"​: ​"chordC"​,
 ​"content"​: [
 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"length"​,
 ​"content"​: ​1
 },

 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"radius"​,
 ​"content"​: ​0.0005
 },

 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"tension"​,
 ​"content"​: ​432
 },

 {

 ​"type"​: ​"string"​,
 ​"name"​: ​"material"​,
 ​"content"​: ​"steel"
 }

]

 },

 {

 ​"type"​: ​"chord"​,
 ​"name"​: ​"chordEb"​,
 ​"content"​: [
 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"length"​,
 ​"content"​: ​0.915
 },

 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"radius"​,
 ​"content"​: ​0.0005
 },

 {

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 7 of 14

 ​"type"​: ​"number"​,
 ​"name"​: ​"tension"​,
 ​"content"​: ​510
 },

 {

 ​"type"​: ​"string"​,
 ​"name"​: ​"material"​,
 ​"content"​: ​"steel"
 }

]

 }

]

 }

);

In return, modalys should send these messages (on the “notification” topic) upon reception:

{

 "sessionId": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"preparing"
}

{

 "sessionId": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"processing"
}

{

 "sessionId": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"ready"
}

And finally:

{

 "sessionId": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"playing"
}

Then the process stops automatically when there is no more sound, resulting in this message:

{

 "sessionId": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"over"
}

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 8 of 14

3.1.5. Playing a virtual music instrument

It is a Musical Performance ↔ modalys.js communication situation.

Below are the main types of messages that are sent in performance situation.

3.1.5.1. Preparing for performance

When performance mode is initialized, the following message must be sent to Modalys to prepare

for performance mode:

modalysChannel.publish(​"play"​,
 {

 ​"type"​: ​"pluckedString"​,
 ​"name"​: ​"MyBiChord"​,
 ​"content"​: [
 {

 ​"type"​: ​"chord"​,
 ​"name"​: ​"chordC"​,
 ​"content"​: [
 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"length"​,
 ​"content"​: ​1
 },

 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"radius"​,
 ​"content"​: ​0.0005
 },

 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"tension"​,
 ​"content"​: ​432
 },

 {

 ​"type"​: ​"string"​,
 ​"name"​: ​"material"​,
 ​"content"​: ​"steel"
 }

]

 },

 {

 ​"type"​: ​"chord"​,
 ​"name"​: ​"chordEb"​,
 ​"content"​: [
 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"length"​,
 ​"content"​: ​0.915
 },

 {

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 9 of 14

 ​"type"​: ​"number"​,
 ​"name"​: ​"radius"​,
 ​"content"​: ​0.0005
 },

 {

 ​"type"​: ​"number"​,
 ​"name"​: ​"tension"​,
 ​"content"​: ​510
 },

 {

 ​"type"​: ​"string"​,
 ​"name"​: ​"material"​,
 ​"content"​: ​"steel"
 }

]

 }

]

 }

);

Parts

Some instruments are made of one single object (ex: a membrane), others from multiple similar

objects called “parts” (ex: a simplified violin made of4 strings, a xylophone made of 12 bars etc.). In

some other iMuSciCA documents, parts are sometimes called “subobjects”.

Each part has an ID (unique among parts). This ID will be used for mapping the right gesture to the

right part (i.e.: which string is being plucked in a guitar).

For each instrument, the part IDs are the names of the subobjects of a specific type for this

instrument : “chord” for ​pluckedString ​/ ​guitarInstrument​ and ​bowedString​, “surface” for ​hitBar​ and

hitRectPlate​, “circleSurface” for ​hitCircMembrane​ and “squareSurface” for ​hitRectMembrane​.
So in our example, we have two parts with IDs “chordC” and “chordEb”.

3.1.5.2. Notification when ready to play

As for the ​try​, modalys.js sends “preparing”, “processing” and “ready” notifications when receiving a

play​ request. Then a “description” notification is sent which includes a list of the instrument

performance parameters:

{

 "sessionId": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"description"​,
 "partsNumber": ​2​,
 "performanceParameters": [

 {

 "name": ​"pluckpoint"​,
 "type": ​"float"​,
 "default": ​0.6​,
 "min": ​0.001​,
 "max": ​0.999

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 10 of 14

 },

 {

 "name": ​"position"​,
 "type": ​"float"​,
 "default": ​0.1​,
 "min": ​-0.5​,
 "max": ​0.5​,
 "try": [[​0​, ​0.5​], [​0.01​, ​-0.5​], [​0.02​, ​0.5​]]
 },

 {

 "name": ​"listeningpoint"​,
 "type": ​"float"​,
 "default": ​0.3​,
 "min": ​0.001​,
 "max": ​0.999
 },

 {

 "name": ​"outputgain"​,
 "type": ​"float"​,
 "default": ​2​,
 "min": ​0
 },

 {

 "name": ​"pitchbend"​,
 "type": ​"int"​,
 "default": ​0​,
 "min": ​-200​,
 "max": ​200
 }

]

}

A good practice is to save the sessionId when one of these notifications occurs, as you will need it

later for all the operations performed in this “play” session. For example, when it’s “ready”:

var​ sessionId;
modalysChannel.subscribe(​"notification"​, ​function​(data) {
 ​if​ (data.hasOwnProperty(​'status'​) && data.status == ​'ready'​) {
 sessionId = data.sessionId;

 }

 ​console​.log(data);
});

3.1.5.3. Performing

During the performance, gesture data are being sent to modalys.js in real time, and several

parameters can be changed at once:

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 11 of 14

modalysChannel.publish(​"updateParameter"​, {
 ​"sessionId"​: ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 ​"parameters"​: [{
 ​"name"​: ​"plectrumPosition"​,
 ​"partId"​: ​"chordC"​,
 ​"value"​: ​0.03​,
 ​"when"​: ​0.01
 }, {

 ​"name"​: ​"stringPluckPoint"​,
 ​"partId"​: ​"chordC"​,
 ​"value"​: ​0.49
 }]

});

The ​when​ field is optional. It creates a linear interpolation between the current value and the new

one, during the specified time (in sec.). If absent, the parameter change is instant.

3.1.5.4. Pausing, resuming or ending a performance

A session can be paused or resumed instantly ; the effect in modalys.js will be to

disconnect/reconnect the web audio node attached to the virtual instrument. But the current state

of this instrument is kept “frozen”. This following request must be sent:

modalysChannel.publish(​"pause ​[or resume]​"​, {
 ​"sessionID"​: ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
});

To end a performance session, send the following request:

modalysChannel.publish(​"stop"​, {
 ​"sessionID"​: ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
});

And finally, once the instrument is actually terminated, modalys fires this:

{

 "sessionID": ​"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"​,
 "status": ​"over"
}

3.1.6. The server side eigenvalue solver for 3D objects

Although not used in the iMuSciCA project, the ability to create sounding objects from 3D mesh is

one of Modalys’ particularities. This is, however, the most demanding mathematical aspects of the

core engine.

The static mode computation increases exponentially upon the mesh’s granularity, with a

generalized eigenvalue problem under the hood. For that reason, this very CPU-intensive initial

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 12 of 14

phase is processed server-side by the ​eigenvalueproblemsolver command line (based on Lapack and 6

Superlu) with asynchronous client requests (AJAX) . 7

6 http://www.netlib.org/lapack/
7 http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

 iMuSciCA D4.10 – Final ver. Comput. models for sound/music generation for virtual instruments Page 13 of 14

