Interactive Music Science Collaborative Activities
Team Teaching for STEAM Education

Deliverable 4.4
First Version of Computational models for sound and music
generation for virtual instruments

Date: : 05/10/2017

Author(s): i Robert Piechaud (IRCAM), Quentin Lamerand (IRCAM)

Contributor(s):

Quality Assuror(s): : Fotini Simistira (UNIFRI), Carlos Acosta (LEOPOLY)

Dissemination level: i PU

Work package | WP4 — Core enabling technologies modules of iMuSciCA

Version: i 1.0

Keywords: i sound generation, virtual musical instrument

Description: i First version of the computational models for sound and music
generation for virtual instruments.

H2020-ICT-22-2016 Technologies for Learning and Skills
“ iMuSciCA (Interactive Music Science Collaborative Activities)
——— Project No. 731861

Euripean Urion Fusding
Tor Rmkiich b b=t

Project Runtime: January 2017 —June 2019
Copyright © iMuSciCA Consortium 2017-2019

Executive Summary

In this deliverable we present the first version of the computational models for sound and music
generation for virtual instruments. The virtual instrument models are based on physics and
embodied in Ircam’s Modalys technology. As part of the iMuSciCA project, Modalys has been ported
from C++ to the browser HTML5 context in order to function like any other workbench module. The
result library is called modalys.js. First we present the Modalys iMuSciCA API, and then we will
expose some standalone examples. Finally and briefly, we will talk about CPU performances.

The following urls will be come across in this document:
Root url:
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/

Instruments test urls:
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings_with snail.
html

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/xylo.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/plate.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/simpledrum.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings2channels.h
tml

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 1 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings_with_snail.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings2channels.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings_with_snail.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings2channels.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/plate.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/xylo.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/simpledrum.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings.html

Version Log

Date Version Author Change
No.
04-09-2017 0.1 Robert Piechaud (IRCAM) Initial content
02-10-2017 0.2 Robert Piechaud (IRCAM), Quentin Lamerand Document finalization,
(IRCAM) submission for quality

assurance

04-10-2017 0.3 Robert Piechaud (IRCAM) Incorporation of
comments of quality
assurors

05-10-2017 1.0 Vassilis Katsouros (ATHENA) Submission to the EU

Disclaimer

This document contains description of the iMuSciCA project findings, work and products. Certain
parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using its content
please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as a
representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any sort of responsibility that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this
publication is the sole responsibility of iMuSciCA consortium and can in no way be taken to reflect
the views of the European Union.

iMusSciCA is an H2020 project funded by the European Union.

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 2 of 23

TABLE OF CONTENTS

Executive Summary 1
1. Introduction 6
2. Installation and technical requirements for modalys.js
2.1. Installation
2.2 Requirements 6
3. Description and use of modalys.js 6
3.1. modalys.js API 7
3.1.1. Communication context 7
3.1.2. Messages to Modalys 7
3.1.3. Messages from Modalys 7
3.1.4. Trying a virtual music instrument at design stage 7
Primitive-based instruments 7
Parts 8
Mesh-based instruments 9
3.1.5. Playing a virtual music instrument 10
3.1.5.1. Preparing for performance 10
3.1.5.2. Error notification 11
3.1.5.3. Notification when ready to play 11
3.1.5.4. Performing 11
3.1.5.5. Pausing, resuming or ending a performance 12
3.1.6. The server side eigenvalue solver for 3D objects 12
3.1.6.1. 3D object instantiation sequence 13
3.1.6.2. Server platform 13
3.2. Standalone modalys.js musical instrument prototypes 13
3.2.1. Plucked strings 14
Controls 14
Plucking a string 14
Changing the pluck contact point 14
Changing the listening point 14
Altering the pitch slightly 15
3.2.2 Plucked strings with convolution reverb 15
3.2.3. Plucked strings with Snail analysis 16
3.2.4. Xylo-/metallophone 17
3.2.5. Percussion: metal plate 18
Controls 18
Mallet vertical position slider 18
Hitting point 18
3.2.6. Percussion: membranophone 19
Controls 19
iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 3 of 23

Mallet vertical position slider 19

Hitting point 19

3.2.7. 3D bell 20

3.2.8. Multi-channel test 21

Controls 21

4. Performances 21

4.1. Current results 21

4.2. Strategy to improve performances 22
iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 4 of 23

LIST OF ABBREVIATIONS

Abbreviation Description
JS Javascript
WASM Web Assembly
asm.js Strict subset of Javascript
API Application Programming Interface
CPU Central Processing Unit
WP Work Package
PU Public document
ATHENA ATHENA RESEARCH AND INNOVATION CENTER IN INFORMATION

COMMUNICATION & KNOWLEDGE TECHNOLOGIES

UCLL UC LIMBURG

EA ELLINOGERMANIKI AGOGI SCHOLI PANAGEA SAVVA AE

IRCAM INSTITUT DE RECHERCHE ET DE COORDINATION ACOUSTIQUE
MUSIQUE

LEOPOLY 3D FOR ALL SZAMITASTECHNIKAI FEJLESZTO KFT

CABRI Cabrilog SAS

WIRIS MATHS FOR MORE SL

UNIFRI UNIVERSITE DE FRIBOURG

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 5 of 23

1. Introduction

The Modalys' virtual music instrument technology is embedded into modalys.js, a single-file
javascript library. Modalys owns two types of sounding objects: i) primitives, such as strings, tubes,
plates or membranes, and ii) 3D objects defined by their geometry expressed in a mesh in .obj
format. In the second case, the mesh can either contains solids?, or surface elements representing
the neutral fiber® of the object.

modalys.js, through its message-based communication API, contains all that is required to
instantiate, test and finally perform virtual musical instruments based on physical models.

2. Installation and technical requirements for
modalys.js

2.1. Installation

modalys.js physical model engine is activated just by including the javascript library in the html code:

2.2 Requirements

modalys.js is built using emscripten® with heavy optimizations. It produced asm.js° code, as special,
strict subset of javascript. As such, it can only run properly on Firefox and Edge “nightly” (alpha)
build.

That said, we intend to target WebAssembly® in the final version of modalys.js for iMuSciCA, no more
restricting ourselves to Firefox and Edge development builds, and thus allowing a much broader
browser compatibility with even better performances.

3. Description and use of modalys.js

As a core sound library, modalys.js doesn’t display anything (apart from log messages within the
browser’s developer console). As such, modalys.js works very much as a server, responding to
client's request to test or perform virtual instruments.

! http://forumnet.ircam.fr/product/modalys-en/

2 out of iIMuSCciCA’s scope.

® or neutral axis: https://en.wikipedia.org/wiki/Neutral_axis
* https://en.wikipedia.org/wiki/Emscripten

> https://en.wikipedia.org/wiki/Asm.js

® http://webassembly.org/

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 6 of 23

3.1. modalys.js API

3.1.1. Communication context

iMuSciCA core modules communicate with each other through an asynchronous client-side
messaging service: postal.js, which implements a channel/topic(.subtopic) paradigm.
o We use the modalys channel.
e Each module has a dedicated topic and subtopics
e To ‘talk’ to the Modalys module, another module will publish on a topic from the modalys
channel, named after the requested action (ex: play)
Module can send notifications by publishing on the modalys > notification topic.
A module will therefore subscribe to modalys > notification to receive Modalys’ feedbacks.

3.1.2. Messages to Modalys

Upon initialization modalys.js subscribes to all possible modalys topics :

channel = postal.channel("modalys");

channel.subscribe("#", (data, envelope) { // subscribe to all topics

N;

Modalys’ subtopics currently are:

modalys > try: test the sound of an instrument being designed.

modalys > play: real time performance of a virtual instrument.

modalys > updateParameter: update some parameter (pluck position etc) in real time while
playing.

modalys > pause: put a virtual instrument in hold (play mode)

modalys > resume: resume playing the instrument after hold.

modalys > stop: stop a virtual instrument.

3.1.3. Messages from Modalys

modalys.js fires notifications on the modalys > notification topic when necessary.

3.1.4. Trying a virtual music instrument at design stage

It is a leopoly ¢ modalys communication situation.
Below are the types of messages that should be sent upon instrument design stage, when testing
how an instrument sounds.

Primitive-based instruments

Example for a 2-string instrument:

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 7 of 23

https://github.com/postaljs

channel.publish("try", {
"requestld": "
"instrumentType": "pluckedString",
"name": "My plucked bichord",
"parts": [
{
physicalParameters : {
"attachmentPoints": [{

IIXII: ,
lly|l: ,
n,n

2"
I
"X":

HZH:

1,

"radius": ,
"tension": ,
"material": "steel"

physicalParameters : {
"attachmentPoints": [{

X

llyH: ,

z

b

IIXII:

’

’

Z
1,
"radius":
"tension": 9.3,
"material": "nylon"

& The attachment points for a string will be interpreted by Modalys as between the nut and the
bridge.

Parts

Some instruments are made of one single object (ex: a bell), others from multiple similar objects
called “parts” (ex: a simplified violin made made with 4 strings, a xylophone made of 12 bars etc.). |
some other iMuSciCA documents, parts are sometimes called “subobjects”.

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 8 of 23

Mesh-based instruments
Example for a bell:

channel.publish("try", {

"requestld": "
"instrumentType": "3dBell”
"name": "My 3D Bell",
"parts": [{
"physicalParameters": {

"thickness": ,
"material": "bronze"
}
1,
"Mesh": "o Bell\nv 0 0 O\n f 243 543 653\n"

N;

In return, modalys should send this message upon reception:

channel.publish("notification", {
"requestld": "
"sessionld": "

"status": "preparing"

And then, when ready:

channel.publish("notification", {
"requestld": "Xxxxxx",

"sessionld": "yyyyyy",

"status": "playing"

Finally, when the sound testing is over, modalys terminates the instruments and sends this:

channel.publish("notification", {
"requestld": "xxxxxx",

"sessionld": "yyyyyy",

"status": "over"

& Modalys determines when to stop the test sound, depending on the instrument type.

NB: the requestlID should be generated by the workbench. Available to every module, there must be
a global function:

function (){

var uniquelD = ...

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 9 of 23

return uniquelD;

3.1.5. Playing a virtual music instrument

It is a Athena ¢ modalys communication situation.
Below are the main types of messages that are sent in performance situation.

3.1.5.1. Preparing for performance

When performance mode is initialized, the following message must be sent to Modalys to prepare
for performance mode:

channel.publish("play", {
"requestld": "
"instrumentType": "pluckedString",
"name": "My plucked bichord",
"uniquelnstrumentld": "2342343", // created by the design environment, this id
// is registered on the server as well.
"parts": [{
"partld": "A",
"physicalParameters": {
"attachmentPoints": [{

X

nn,
y . ’
n,n

Z

b

IIXII:

’

(TRTIN
1,
"radius": ,
"tension": ,
"material": "steel"

”partld”: I|Bll'
"physicalParameters": {
"attachmentPoints": [{

X

||y||: ,

z

b

an:

’

IIZH:
1,
"radius":
"tension":

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 10 of 23

"material": "nylon"

You can see that each part (string here) has an ID (unique among parts). This ID will be used for
mapping the right gesture to the right part (ex: which string is being plucked in a guitar).

3.1.5.2. Error notification

If a problem occurred while instantiating the instrument, modalys fires an error notification. For
instance:

channel.publish("notification", {
"requestld": "xxxxxx"
"status": "error",
"message": "Error instantiating instrument (request ID xxxxxx): missing physical parameter."

N;

3.1.5.3. Notification when ready to play

When the instrument is ready to be performed, modalys.js sends a notification which includes the
parameter introspection of the instrument:

channel.publish("notification", {
"requestld": "xxxxxx",

"sessionld": "yyyyyy",
"status": "ready",
"partsNumber": 2,
"performanceParameters": [{

"name": "plectrumPosition",
"type": "float"

b

"name": "stringPluckPoint",

"type": "float"

min-—:

3.1.5.4. Performing

During the performance, gesture data are being sent to modalys.js in real time, and several
parameters can be changed at once:

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 11 of 23

channel.publish("updateParameter", {

"sessionld": "yyyyyy",
"parameters": [{

"name": "plectrumPosition",
”partld”: |IAI|I
"value":

"when":

LA

"name": "stringPluckPoint",
”partld”: |lAl|'

"value":

The when field is optional. It creates a linear interpolation between the current value and the new
one, during the specified time (in sec.). If absent, the parameter change is instant.

3.1.5.5. Pausing, resuming or ending a performance

A session can be paused or resumed instantly ; the effect in modalys.js will be to
disconnect/reconnect the web audio node attached to the virtual instrument. But the current state
of this instrument is kept “frozen”. This following request must be sent:

channel.publish("pause

"sessionID": "yyyyyy"
1;

To end a performance session, send the following request:

channel.publish("stop", {

"sessionID": "yyyyyy"
1;

And finally, once the instrument is actually terminated, modalys fires this:

channel.publish("notification", {
"sessionID": "yyyyyy",

n,on

"status": "over"

N;

3.1.6. The server side eigenvalue solver for 3D objects

The ability to create sounding objects from 3D mesh is one of Modalys’ particularities. This is,
however, the most demanding mathematical aspects of the core engine.

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 12 of 23

The static mode computation increases exponentially upon the mesh’s granularity, with a
generalized eigenvalue problem under the hood. For that reason, this very CPU-intensive initial
phase is processed server-side by the eigenvalueproblemsolver command line (based on Lapack’ and
Superlu®) with asynchronous client requests (AJAX) .

3.1.6.1. 3D object instantiation sequence

There are essentially 4 steps when instantiating a 3D object:

1. A musical instrument creation request is received by another iMuSciCA module. Status is
preparing.

2. It is then processed, and an asynchronous AJAX request is sent to the
eigenvalueproblemsolver. Status is processing.

3. Theinstrument’s parameter description is broadcast for other modules to know.

4. Once the mode computation is received by the client, the instrument is ready to be
performed. Status is processing.

[# {7 Inspector [J Console (O Debugger {} StyleEditor (J Performance 4k Memory = Network & Storage] B&Oe8E X

W ¥ Filter output " | Persist Logs
» Object { status: "materialsLoaded" } bell.html:143:7
» Object { requestId: "123456", sessionId: "9dc485ed4-c6d5-4079-8668-9e35fe80efb6", status: "preparing" } bell.html:143:7
» Object { requestId: "123456", sessionId: "9dc485e4-c6d5-4079-8668-9e35fe80efb6", status: "processing" } bell.html:143:7
[Modalys] [t 0.00, step 0] modalys.js:1:1470744
[Modalys] Warning: External eigenvalue solver for object BELL_1 has not responded yet! modalys.js:1:1470744
» Object { partsNumber: 1, performanceParameters: [.], requestId: "123456", sessionld: "9dc485e4-c6d5-4079-8668-9e35feB0efb6", bell.html:143:7
status: "description"
» Object { requestId: "123456", sessionId: "9dc485e4-c6d5-4079-8668-9e35feB8@efb6", status: "ready" } bell.html:143:7

3.1.6.2. Server platform

The eigenvalueproblemsolver executable is currently available for Mac OS server only ; it has been
successfully tested, but only locally at Ircam. We intend to make the command line available for
Linux servers shortly, so it can run on the iMuSciCA server to be tested and experimented by
everyone.

3.2. Standalone modalys.js musical instrument prototypes

Independently from iMuSciCA workbench, we provide with several simple modalys.js example
showing the other developers how to implement and use the physical model virtual instrument
technology.

All example instrument are equipped with some basic control, emulating a “gesture” - for instance a
slider for the normal distance of a mallet to a drum. In actual play situation, the gesture parameters
are much more natural way.

Each page gives a summary of the available construction (physical) and performance parameters.

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/

7 http://www.netlib.org/lapack/
8 http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 13 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/

modalys.js and snail.js examples
All examples are now compliant with postal js for communication

¢ Xylo/Metalophone
« Plucked gs

» Plucked strings (pizzicato) with convolution reverb
o Plucked strings with Snail analysis

» Snail analyser (alone)

« Plate

¢ Drum/membrane

e 3D Bell (¥*)

« TRY instruments

o Call from iframe

o Multichannel test (with plucked strings)

(*) Mac only at this time. For details, see the README .md at the root of repository.

Instrument Parameters

modalys.js version: 0.1.16

3.2.1. Plucked strings

This example presents a 4-string instrument, closed in sound to an acoustic guitar. The tuning is in
fifths : low F-C-G-D. It features a “pluck” type of interaction.

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings.html

Controls

Each string is equipped with individual controls:

Plucking a string

Press the key 1...4 to pluck the string F, C, G, D respectively (like a viola pitched one fifth lower).

Changing the pluck contact point

Move the corresponding slider, representing the total length of the string (a value between 0 and 1).

Changing the listening point

In a real-life string instrument, the string’s energy is propagated to the soundboard via the bridge ;
the energy is then transferred to the soundboard which makes the air vibrate, and this vibration
finally reaches our ears - which we call “sound”. In Modalys, it is simplified in most cases : we attach
a listening point to the string directly, as we were pressing the ear against it.

This control allows to change the listening point position along the string (a value, between 0 and 1).

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 14 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings.html

Altering the pitch slightly

This slider provides with a fine control over the pitch, expressed in cents. The values are in
[-200...200], that is, making the pitch vary in +/- one whole tone.

modalys.js live example: plucked strings

modalys.js version: 0.1.16

String 1

pluck point: listening point: pitchbend:

Pluck down (1) Pluck up (1)

String 2

pluck point: listening point: ‘ pitchbend:

Pluck down (2) Pluck up (2)

String 3

pluck point: listening point: pitchbend:

Pluck down (3) Pluck up (3)

String 4

pluck point: listening point: pitchbend:
Pluck down (4) Pluck up (4)

Stop sound Log process time Double volume

PluckedString

Physical parameters (default value)

o length (1.0 m) (can be computed from attachmentPoints [{x,y,z}, {x.,y.z}])
« tension (94.66 N)

« radius (0.001 m)

« material (=> density (1000 kg/m3), young (1e+09 N/m2), freqLoss (0.2), constLoss (0.2))

Performance parameters (default value) : possible values
« pluckpoint (0.6) : 0-1

« position (0.1 m)
« listeningpoint (0.3) : 0-1

3.2.2 Plucked strings with convolution reverb

This is the same example of a 4-string instrument, but the strings have a somehow quicker decay,
simulating a violin family pizzicato sound. In this example, we also experimented with web audio’s

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 15 of 23

built-in convolution reverb, using a real, expensive violin’s impulse response. Here is how to play this
instrument:

=> Play with the 1,2,3 and 4 keyboard keys (same as previous example)

=> Press on the button “add convolution reverb” to get the effect.

=> Play again with the keys to hear the difference.
NB: web audio’s convolution reverb is quite CPU-demanding, so we will probably not include it into
the final workbench.

3.2.3. Plucked strings with Snail analysis

In this example, we combine both Modalys and Snail technologies. This is again the same plucked
string instrument, reduced to 3 strings (tuned on low F, C and G) and equipped with a real time Snail
analyzer. The instrument can be performed using the key 1,2, and 3.
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings_with_snail.
html

modalys.js and snail.js combined: plucked strings

modalys.js version: 0.1.16

String 1

pluck point: listening point: pitchbend: o

Pluck down (1) Pluck up (1)

String 2

pluck point: listening point: pitchbend:

Pluck down (2) Pluck up (2)

String 3

pluck point: listening point: pitchbend:
Pluck down (3) Pluck up (3)

Stop sound Log process time Double volume Get modalys.js version

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 16 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings_with_snail.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings_with_snail.html

3.2.4. Xylo-/metallophone

This is pentatonic metallophone - C, D, E, G, A, C that is sensitive to the speed with which it is “hit”
with either the mouse or the 1...6 keyboard keys.

It is also a good example where a fundamental object + interaction is replicated into several “parts”,
pitched differently. We later intend to have this kind instrument react to MIDI on-off message.
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/xylo.html

modalys.js live example: six bars tuned in pentatonic scale

Press and release 1...6 keys, or click on a bar (both ways are speed-sensitive...)

modalys.js version: 0.1.16

Log process time

Bar

Physical parameters (default value)

« length (1.0 m), modified by pitch (261.63 Hz)
e width (0.05 m)
o thickness (0.005 m)

« material (=> density (7700 kg/m3), young (2.0e11 N/m2), poisson (0.31), freqLoss (0.1), constLoss (0.3))
Performance parameters (default value) : possible values
« impactCoords ([0.5, 0.3]) : [0-1,0-1]

« malletPosition (0.25 m)
« outputPoint ([0.5,0.9]) : [0-1,0-1]

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 17 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/xylo.html

3.2.5. Percussion: metal plate

This example simulates a rectangular metal plate hit with a felt mallet. The interaction, called “felt
connection”, is not a simple hit, but rather emulates the complex hysteresis phenomenon found in
felt hammers or mallets.

The example is equipped with a real time oscilloscope displaying the waveform.
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/plate.html

Controls

Mallet vertical position slider

This represents the vertical position (expressed in meters) of the mallet above the membrane. Move
the slider to and fro (the lower the closer to the plate). If you stay around zero too long, the
membrane will quickly get damped, producing a rather “ugly” sound, as on a real instrument.

Hitting point

Click on the square to change the mallet-plate 2D contact point. The sound may vary a great deal
depending on this location.

modalys.js live example: rectangular plate hit with a felt malle

modalys.qjs version: 0.1.16

Plate 1

Mallet position (0 is at the plate): 022m.

Log process time

Plate

Physical parameters (default value)

width (0.5 m)

height (0.5 m)

thickness (0.005 m)

material (=> density (15000 kg/m3), young (le+11 N/m2), poisson (0.3), freqLoss (0.1), constLoss (0.13))

Performance parameters (default value) : possible values

« impactCoords ([0.63,0.234]) : [0-1,0-1]
= malletPosition (0.25 m)
« outputPoint ([0.2,0.1]) : [0-1,0-1]

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 18 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/plate.html

3.2.6. Percussion: membranophone

This example simulates a membranophone (here a bass drum) hit with a felt mallet. As with the
metal plate, the interaction includes the hysteresis phenomenon.

The example is also equipped with a real time oscilloscope displaying the waveform.
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/simpledrum.html

Controls

Mallet vertical position slider

This represents the vertical position (expressed in meters) of the mallet above the membrane. Move
the slider to and fro (the lower the closer to the membrane). If you stay around zero too long, you'll
get a somewhat ugly, damped sound.

Hitting point

Click on the drum round picture to change the mallet-membrane 2D contact point. The sound will
vary in tone depending on the location.

modalys.js live example: drum/membrane hit with a felt mallet

modalys.js version: 0.1.16

impact point at r = 0.66 0 = 114.96

Drum 1

Mallet vertical position (0 is at drum’s head): 03m.

SimpleDrum

Physical parameters (default value)

« radius (0.5 m)
« tension (400 N)
« material (=> density (0.25 kg/m3), freqLoss (1.0), constLoss (1.0))

Performance parameters (default value) : possible values
« impactCoords ([0.8, 20°]) : [0-1,0-360]

« malletPosition (0.25 m)
« outputPoint ([0.1, 130°]) : [0-1, 0-360]

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 19 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/simpledrum.html

3.2.7. 3D bell

In this experimental example, we create a 3D bell out of a mesh (in .obj format). The mesh,
mechanically well-defined®, is 2D surface embedded in the 3D space, representing the neutral axis of
a church bell. To instantiate the final object, the 2D surface is equipped with a thickness and some

physical material properties (those of bronze).

The static mode computation increases exponentially according to the mesh’s granularity, with a

generalized eigenvalue problem under the hood. For that reason, this initial phase is processed

server-side by the eigenvalueproblemsolver command line, the client request being asynchronous.

Once the mode computation is received, the instrument is ready to be performed.

modalys.js live example: 3D bell hit with felt mallet

modalys.js version: 0.1.16

3D Bell

Mallet position (0 is at the bell): 7 o00sm.

Log process time

3dBell

Physical parameters (default value)

« thickness (0.01 m)

« material (=> density (2500 kg/m3), young (5e+10 N/m2), poisson (0.2), freqLoss (0.3), constLoss (0.8))
« feltThickness (0.01 m)

» feltFO (1e+12)

« feltAlpha (2.3)

« feltEpsilon (0.83)

« feltTau (0.004)

Performance parameters (default value) : possible values

« malletPosition (0.25 m)

° It is a common belief that any type of mesh could result in consistent mechanical computation. To the
contrary, a mesh must follow very strict geometrical constraints in order, for instance, to create a sounding

object.

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments

Page 20 of 23

3.2.8. Multi-channel test

A Modalys object can be listened to with any number of listening points, each being routed to a
specific channel (left or right). In the previous instruments, only channel 1 is used, and this last
example shows a multi-channel situation.

Controls

Controls are like the first plucked string example, except that each string is equipped with 2
independent listening points, each routed to channel 1 (R) and 2 (L) respectively.

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings2channels.h
tml

modalys.js live example: plucked strings

(with 2 adjustable listening points on each string, mixed into left+right channels)

modalys.js version: 0.1.16

E &
o] E. & B g
g = = = = =
i = =} = -} 5
String 1) iR ol g 0 £ £
B -] g -] g g
=. o E =} c 2
= =] = 5 = =9
=4 = — -]
— [S]
Pluck up {1) Pluck down (1)
B 5
= & B g E. -
£ =] 5] 5 =,
u [a] = o = = I
String 2 e [g e ose1 2 =
2 2 g 2 g a
g' = g = = g
= 1 Z 1 o
- (=]
Pluck up {(2) Fluck down (2)
Stop scund Log process time Double volume Get modalys.js version

4. Performances

4.1. Current results

With technologies as CPU-demanding as Ircam or Leopoly, performances within the browser are
critical in iMuSciCA. Version after version, we have been getting more and more encouraging
performances for modalys.js with the following relatively modest test machine:

e Macbook pro early 2013, 2,4 GHz, 8GB RAM

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 21 of 23

http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings2channels.html
http://devtest.leopoly.com/3d-interaction-repository-V1/modalys/public/pluckedstrings2channels.html

e MacO0S10.10
e Firefox Nightly 58.a1

The performance depends a great deal on the instrument’s complexity (humber of modes, number
of parts etc.) To give an idea, the 4-plucked string instrument, with 30 modes for each string,
performs at 10 ms per 1024 sample frame, at a sample rate of 44100 kHz. So for now modalys.js
takes less than half of the available CPU resource.

4.2. Strategy to improve performances

As previously stated, we intend to target WebAssembly in our compilation, and we believe we will
get a CPU boost from it.

Also, the number of modes can be slightly lowered, without compromising the sound quality too
much.

iMuSciCA D4.4 — 1st ver. Comput.models for sound/music generation for virtual instruments Page 22 of 23

